The Hemo-Neural Hypothesis: Effects of Vasodilation on Astrocytes in Mammalian Neocortex
نویسندگان
چکیده
Astrocytes play an important role in regulating neuronal activity and local brain states, in part by serving as intermediaries between neurons and vasculature. We postulate that neurons and astrocytes are sensitive to biophysical conditions in their local environment, in addition to their participation in traditional signaling networks with other neurons. Mechanically sensitive astrocytic endfeet ensheathe cerebral blood vessels, which change size in order to regulate blood flow. We found that changes in local biophysical state caused by mechanical perturbations exerted through blood vessels can depolarize astrocytes and some neurons in slice. To test the hemoneural hypothesis in vivo, we developed a means of inducing dilation using the SUR2B receptor agonist pinacidil, which is specific to vascular smooth muscle. It was important to ascertain that pinacidil had no direct effect on astrocytes or neurons, and we confirmed this in whole cell recordings in cortical slices. We then used two-photon imaging to visualize astrocytic calcium dynamics in vivo while manipulating vasodilation in vivo. Pinacidil caused a 10-20% dilation in most vessels, a degree of dilation of similar magnitude to those naturally evoked by persistent sensory stimulation (e.g. in fMRI studies). We found that increases in pial arteriole diameter could occasionally evoke traveling calcium waves in astrocytes. We also saw consistently slow increases (which took tens of seconds to onset, and persisted for minutes) in astrocytic calcium levels at both endfeet and soma in cortical layer 1, corresponding to vessel dilation. When vessels partially reconstricted due to pinacidil washout, calcium levels also showed a relative decrease. At short time scales (from 0.5 5 seconds) we saw strong correlations (>0.5) between small fluctuations in astrocytic calcium levels (1-3%) and vessel diameter (1-3%). Fluctuations in vessel diameter predicted similar fluctations in astrocytic calcium, as often and as strongly as the reverse, suggesting feedback regulation between vascular diameter and astrocytic calcium activation levels. Thesis supervisor: Christopher I. Moore Title: Associate Professor of Neuroscience
منابع مشابه
Pinacidil induces vascular dilation and hyperemia in vivo and does not impact biophysical properties of neurons and astrocytes in vitro.
Vascular and neural systems are highly interdependent, as evidenced by the wealth of intrinsic modulators shared by the two systems. We tested the hypothesis that pinacidil, a selective agonist for the SUR2B receptor found on smooth muscles, could serve as an independent means of inducing vasodilation and increased local blood volume to emulate functional hyperemia. Application of pinacidil ind...
متن کاملIsolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملSensory Response of Transplanted Astrocytes in Adult Mammalian Cortex In Vivo
Glial precursor transplantation provides a potential therapy for brain disorders. Before its clinical application, experimental evidence needs to indicate that engrafted glial cells are functionally incorporated into the existing circuits and become essential partners of neurons for executing fundamental brain functions. While previous experiments supporting for their functional integration hav...
متن کاملThe hemo-neural hypothesis: on the role of blood flow in information processing.
Brain vasculature is a complex and interconnected network under tight regulatory control that exists in intimate communication with neurons and glia. Typically, hemodynamics are considered to exclusively serve as a metabolic support system. In contrast to this canonical view, we propose that hemodynamics also play a role in information processing through modulation of neural activity. Functiona...
متن کاملP 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury
Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011